Question #76899
1 Answer
Nov 18, 2017
It converges. Compare it with
Explanation:
I'm going to compare
#int_1^oo 1/sqrt(x^6+1) dx#
Since
#int_1^oo 1/x^3 dx = 1/2#
The integral
#int_1^oo 1/sqrt(x^6+1) dx#
must therefore converge too.
The integral
#int_0^1 1/sqrt(x^6+1) dx#
converges as it is a proper integral. Putting the 2 integrals together
#int_0^1 1/sqrt(x^6+1) dx + int_1^oo 1/sqrt(x^6+1) dx = int_0^oo 1/sqrt(x^6+1) dx#
The resultant integral converges as well.