What is the derivative of tanx?

3 Answers
Nov 22, 2017

see below

Explanation:

one approach is to use the quotient rule

#d/(dx)(u/v)=(vu'-uv')/v^2#

#d/(dx)(tanx)=d/(dx)(sinx/cosx)#

#=(cosx(d/(dx)(sinx))-sinx(d/(dx)(cosx)))/(cos^2x)#

#=(cosxcosx-sinx(-sinx))/cos^2x#

#=(cos^2x- -sin^2x)/cos^2x#

#=(cos^2x+sin^2x)/cos^2x#

#=1/cos^2x=sec^2x#

Nov 22, 2017

# dy/dx = sec^2x #

Explanation:

If:

# y = tanx#

Then applying the quotient rule we have:

# dy/dx = d/dx(sinx/cosx)#
# \ \ \ \ \ = ( (cosx)(d/dx sinx) - (sinx)(d/dx cosx) )/ (cosx)^2 #
# \ \ \ \ \ = ( (cosx)(cosx) - (sinx)(-sinx) )/ (cos^2x) #
# \ \ \ \ \ = ( cos^2x + sin^2x )/ (cos^2x) #
# \ \ \ \ \ = ( 1 )/ (cos^2x) #
# \ \ \ \ \ = sec^2x #

Nov 22, 2017

see below

Explanation:

we could do it from first principles

#(dy)/(dx)=Lim_(hrarr0)(f(x+h)-f(x))/h#

for #y=tanx#

#(dy)/(dx)=Lim_( hrarr0)((tan(x+h)-tanx))/h#

#(dy)/(dx)=Lim_( hrarr0)((tan(x+h)-tanx))/h#

#(dy)/(dx)=Lim_( hrarr0)(((tanx+tanh)/(1-tanxtanh)-tanx))/h#

#(dy)/(dx)=Lim_( hrarr0)((cancel(tanx)+tanh-cancel(tanx)+tan^2xtanh))/(h(1-tanxtanh))#

#(dy)/(dx)=Lim_( hrarr0)(tanh+tan^2xtanh)/(h(1-tanxtanh))#

#(dy)/(dx)=Lim_( hrarr0)(tanh(1+tan^2x)/(h(1-tanxtanh)))#

we need then to evaluate the limit of

#Lim_(hrarr0)(tanh/(h(1-tanxtanh)))#

#now Lim_(hrarr0)(1-tanxtanh)=1-0=1#

so

#Lim_(hrarr0)(tanh/(h(1-tanxtanh)))=Lim_(hrarr0)(tanh/h)#

#=Lim_(hrarr0)(sinh/h1/cosh)#

#=Lim_(hrarr0)(sinh/h)xxLim_(hrarr0)1/cosh)#

#=1xx1=1#

#(dy)/(dx)=1+tan^2x=sec^2x#