#int sqrt(x/(2-x))*dx#
After using #y=sqrt(x/(2-x))# substitution,
#y^2=x/(2-x)#
#x=y^2*(2-x)#
#x=2y^2-xy^2#
#(y^2+1)*x=2y^2#
#x=(2y^2)/(y^2+1)#
#dx=([4y*(y^2+1)-2y*2y^2]*dy)/(y^2+1)^2#
=#(4y*dy)/(y^2+1)^2#
After it, this integral became
#int y*(4y*dy)/(y^2+1)^2#
=#int (4y^2*dy)/(y^2+1)^2#
After using #y=tanz# and #dy=(secz)^2*dz# transormation, it became
#int [4(tanz)^2*(secz)^2*dz]/(secz)^4#
=#int 4(tanz)^2*(cosz)^2*dz#
=#int 4(sinz)^2*dz#
=#int (2-2cos2z)*dz#
=#2z-sin2z+C#
=#2z-(2tanz)/[(tanz)^2+1]+C#
After using #y=tanz# and #z=arctany# inverse transforms, I found
#2arctany-(2y)/(y^2+1)+C#
=#2arctansqrt(x/(2-x))-2sqrt(x/(2-x))/(x/(2-x)+1)+C#
=#2arctansqrt(x/(2-x))-sqrt[x*(2-x)]+C#
=#2arctansqrt(x/(2-x))-sqrt(2x-x^2)+C#