How do you solve #x^ { 2} + x + 14= 9/ 16#?
1 Answer
Nov 23, 2017
Explanation:
The difference of squares identity can be written:
#A^2-B^2 = (A-B)(A+B)#
We will use this with
Given:
#x^2+x+14 = 9/16#
Multiply both sides by
#16x^2+16x+224 = 9#
Transpose and subtract
#0 = 16x^2+16x+215#
#color(white)(0) = (4x)^2+2(4x)(2)+2^2+211#
#color(white)(0) = (4x+2)^2+(sqrt(211))^2#
#color(white)(0) = (4x+2)^2-(sqrt(211)i)^2#
#color(white)(0) = (4x+2-sqrt(211)i)(4x+2+sqrt(211)i)#
Hence:
#4x = -2+-sqrt(211)i#
So:
#x = -1/2+-sqrt(211)/4 i#