If a, b, c #epsilon# R+, then #(bc)/(b+c) + (ac)/(a+c) + (ab)/(a+b)# is always ? a.)#<= 1/2(a+b+c)# b.)#>=1/3[sqrt(abc)]# c.)#<= 1/3(a+b+c)# d.)#>=1/2[sqrt(abc)]#
If a, b, c #epsilon# R+, then #(bc)/(b+c) + (ac)/(a+c) + (ab)/(a+b)# is always ?
a.)#<= 1/2(a+b+c)# b.)#>=1/3[sqrt(abc)]# c.)#<= 1/3(a+b+c)# d.)#>=1/2[sqrt(abc)]#
If a, b, c
a.)
2 Answers
Let
Now
[As it is given that
So
See below.
Explanation:
is symmetric regarding its arguments so it have a maximum/minimum for