How to solve #sum_(n=1)^oo 1/((3n-2)(3n+1))# using partial fractions?

#sum_(n=1)^oo 1/((3n-2)(3n+1))#
There is an infinity sign on the top of the summation sign and n=1 on the bottom.
Please write in details; I don't get how the answer is #1/12#.

1 Answer
Nov 25, 2017

#sum_(n=1)^oo 1/((3n-2)(3n+1)) = 1/3#

Explanation:

#1/((3n-2)(3n+1)) = A/(3n-2)+B/(3n+1)#

So:

#1 = A(3n+1)+B(3n-2)#

Putting #n=2/3# this becomes:

#1 = 3A" "# so #" "A=1/3#

Putting #n=-1/3# it becomes:

#1 = -3B" "# so #" "B=-1/3#

Then:

#sum_(n=1)^N 1/((3n-2)(3n+1)) = sum_(n=1)^N (1/(3(3n-2))-1/(3(3n+1)))#

#color(white)(sum_(n=1)^N 1/((3n-2)(3n+1))) = sum_(n=1)^N 1/(3(3n-2)) - sum_(n=1)^N 1/(3(3n+1))#

#color(white)(sum_(n=1)^N 1/((3n-2)(3n+1))) = sum_(n=1)^N 1/(3(3n-2)) - sum_(n=2)^(N+1) 1/(3(3n-2))#

#color(white)(sum_(n=1)^N 1/((3n-2)(3n+1))) = 1/3+color(red)(cancel(color(black)(sum_(n=2)^N 1/(3(3n-2))))) - color(red)(cancel(color(black)(sum_(n=2)^N 1/(3(3n-2))))) - 1/(3(3N+1)#

#color(white)(sum_(n=1)^N 1/((3n-2)(3n+1))) = 1/3 - 1/(3(3N+1)#

So:

#sum_(n=1)^oo 1/((3n-2)(3n+1)) = lim_(N->oo) sum_(n=1)^N 1/((3n-2)(3n+1))#

#color(white)(sum_(n=1)^oo 1/((3n-2)(3n+1))) = lim_(N->oo) (1/3 - 1/(3(3N+1))) = 1/3#

Note that:

#sum_(n=color(blue)(2))^oo 1/((3n-2)(3n+1)) = 1/(3(3(color(blue)(2))-2)) = 1/12#