How do you solve #ln(x)=x-2#?
1 Answer
Nov 25, 2017
Explanation:
The Lambert W function (actually a family of functions) satisfies:
#W_n(z e^z) = z#
Given:
#ln(x) = x - 2#
Taking the exponent of both sides, we get:
#x = e^(x-2)#
So:
#x e^(-x) = e^(-2)#
So:
#(-x) e^(-x) = -e^(-2)#
So:
#-x = W_n(-e^(-2))" "# for any branch of the Lambert W function.
So:
#x = -W_n(-e^(-2))" "# for any#n in ZZ#