Question #858db

1 Answer
Nov 26, 2017

You can't,

#(1+tan^2(x))/(1-tan^2(x))!=sec^2(x)#

To prove that they aren't equal, we can just evaluate them at a point where they aren't equal. For example,

#(1+tan^2(1))/(1-tan^2(1))~=-2.40#

#sec^2(1)~=3.43#

#-2.40!=3.43#

You can however simplify the expression to something else. If we use the identity that #tan(x)=sin(x)/cos(x)#, we get this:
#(1+sin^2(x)/cos^2(x))/(1-sin^2(x)/cos^2(x))#

Let's make the terms have the same denominator:
#((cos^2(x)+sin^2(x))/cos^2(x))/((cos^2(x)-sin^2(x))/cos^2(x))=#

#=(cos^2(x)+sin^2(x))/cancel(cos^2(x))*cancel(cos^2(x))/(cos^2(x)-sin^2(x))#

#=(cos^2(x)+sin^2(x))/(cos^2(x)-sin^2(x))#

Since #cos^2(x)+sin^2(x)=1# and #cos^2(x)-sin^2(x)=cos(2x)#,
#=1/cos(2x)#