Fourier Analysis. #f(x)=x^2 (-1<x<1), p=2# (How about #f(x)#.?)

1 Answer
Nov 30, 2017

See below.

Explanation:

#f(x) # is even so

#f(x)= sum_(k=0)^oo a_kcos(k pi x)#

NOTE

#int_-1^1 cos(n pi x) cos(m pi x) dx = 1/pi(Sin((m - n) pi)/(m - n) + Sin((m + n)pi)/(m + n))#

with

# 1/pi(Sin((m - n) pi)/(m - n) + Sin((m + n)pi)/(m + n)) = 0# for #n ne m# and

#int_-1^1 cos^2(n pi x) dx =1 + Sin(2 n pi)/(2 n pi)#

and also

#int_-1^1 x^2 cos(npi x) dx = (4 n pi Cos(n pi) + 2 (n^2 pi^2-2) Sin(n pi))/(n^3 pi^3)#

so finally

#(int_-1^1 x^2 cos(npi x) dx)/(int_-1^1 cos^2((k pix) dx)) = a_k #

so #a_k = (4Cos(kpi) )/(k^2 pi^2)#

with #a_0 =1/2int_-1^1 x^2 dx#

Attached a plot representing some mild approximations

enter image source here