Given #a > 0, b > 0, c > 0# calculate the minimum for #(a^x+b^x+c^x)/3# ?

2 Answers
Nov 30, 2017

#( a b c )^(1/3)#

Explanation:

#a^x# = exp(x * ln(a)) = #1 + x*ln(a) + (x²(ln(a))²)/2 + ... #

For small x, we need only the first two terms.
So we have

#lim x->0 " "((1+x*ln(a)+1+x*ln(b)+1+x*ln(c))/3)^(1/x)#

= #lim x->0 " "(1 + (ln(a)+ln(b)+ln(c))*x/3)^(1/x)#

= #lim x->0 " " (1 + k x)^(1/x)# , with k= #(ln(a)+ln(b)+ln(c))/3#

= exp(k) # " " # (Euler's limit)

= #( a b c )^(1/3)#

Nov 30, 2017

#root(3)(abc)#

Explanation:

Assuming #a > 0, b > 0, c > 0# and #x ge 0#

#(a^x+b^x+c^x)/3 ge root(3)(a^xb^xc^x) = (abc)^(x/3)# then

#((a^x+b^x+c^x)/3)^(1/x) ge( (abc)^(x/3))^(1/x) = root(3)(abc)#

NOTE

#((a^x+b^x+c^x)/3)^(1/x)# for #x in (0, oo)# has a minimum at

#lim_(x->0)((a^x+b^x+c^x)/3)^(1/x)#

because

#d/(dx)((a^x+b^x+c^x)/3)^(1/x) gt 0# for #x in (0,oo)#