#lim_(y->0)(sin^2(3y)-3y^2)/(y^2+y^3) =# ?

2 Answers
Dec 4, 2017

Supposing that you mean:

#lim_(y rarr 0) (sin^2(3y) - 3y^2)/(y^2 + y^3)#

The answer is #6#.

Explanation:

I will run through two methods: the 'unofficial' method, and the (more) 'official' method.

Intuitive approach around the limit:

Using the compound angle and double angle formulas for #sin# and #cos#:

#sin(3y) = sin (2y + y)#
#=sin(2y)cosy + cos(2y)siny)#
#=2sinycos^2y+(2cos^2y-1)siny#
#=4sinycos^2y - siny#

(Rearranging to get it all in terms of #sin(y)#)

#=4siny(1-sin^2y) - siny#
#=3siny - 4sin^3y#

Now we want to find the square of that (#sin(3y)#):

#sin^2(3y) = (3siny - 4sin^3y)^2#
#=(siny(3-4sin^2y))^2#
#=sin^2y(3- (4 - 4cos^2y))^2#
#= sin^2y(4cos^2y - 1)^2#

Now to find:

#lim_(y rarr 0) (sin^2y(4cos^2y - 1)^2 - 3y^2)/(y^2 + y^3)#

This is where we start to get a bit 'intuitive'...

As #y rarr 0#, #siny rarr 0#
#rArr siny rarr y#
Hence let #y = siny#.

Meanwhile #cosy rarr 1#
Hence let #cosy = 1#.

This simplifies the limit down to:

#lim_(y rarr 0) (y^2(3)^2 - 3y^2)/(y^2 + y^3)#
#=lim_(y rarr 0)(6y^2)/(y^2 + y^3)#
#=6 lim_(y rarr 0) y^2/(y^2(1+y))#
#=6 lim_(y rarr 0) 1/(1+y)#

Finally letting #y = 0# we get:

#6 lim_(y rarr 0) 1#
#= 6#

Official approach to the limit:

This uses L'Hopital's Rule, i.e. if #lim_(y rarr 0) f(x)/g(x)# yields a mathematically impossible result, then the limit will be the same if you repeatedly differentiate #f# and #g# to the point where the result is no longer undefined.

#lim_(y rarr 0) (sin^2(3y) - 3y^2)/(y^2 + y^3)#

#lim_(y rarr 0) (d/dx(sin^2(3y) - 3y^2))/(d/dx(y^2 + y^3))#

By the chain rule, this is equal to:

#lim_(y rarr 0) (6sin(3y)cos(3y) - 6y)/(2y + 3y^2)#

Still gives out the zero denominator, so we do it all again!

By the product and chain rules:

#d/dx(6sin(3y)cos(3y)#
#=6(3cos(3y)cos(3y) + (-sin(3y)sin(3y))#
#=6(3cos^3y - 3sin^3y)#

Hence:

#lim_(y rarr 0) (6sin(3y)cos(3y) - 6y)/(2y + 3y^2)#
#=lim_(y rarr 0) (18cos^2(3y) - 18sin^2(3y) - 6)/(2 +6y)#

Rearranging the trigonometric parts of the numerator using the Pythagorean Identity, we get:

#lim_(y rarr 0) (36cos^2(3y) - 18 - 6)/(2 +6y)#

Finally letting #y=0#, we get:

#(36-18-6)/2#
#=6#

Goodness, that was long - I hope it helps!

Dec 4, 2017

#6#

Explanation:

#(sin^2(3y)-3y^2)/(y^2+y^3) = (((sin^2(3y))/y^2)-3)/(1+y) = (9((sin^2(3y))/(3y)^2)-3)/(1+y) =( 9( (sin(3y))/(3y))^2-3)/(1+y)#

and now knowing that #lim_(y->0) (sin(3y))/(3y) = 1#

#lim_(y->0)(sin^2(3y)-3y^2)/(y^2+y^3) =( 9( lim_(y->0)(sin(3y))/(3y))^2-3)/(1+lim_(y->0)y) = (9-3)/1 = 6#