First, use this rule of exponents to simplify the denominator:
#a^color(red)(0) = 1#
#(pqr^5 * p^-1qr^8)/(p^color(red)(0)qr^-1) =>#
#(pqr^5 * p^-1qr^8)/(1 * qr^-1) =>#
#(pqr^5 * p^-1qr^8)/(qr^-1)#
Next, cancel the common term in the numerator and denominator:
#(pcolor(red)(cancel(color(black)(q)))r^5 * p^-1qr^8)/(color(red)(cancel(color(black)(q)))r^-1) =>#
#(pr^5 * p^-1qr^8)/r^-1#
Then, rewrite the numerator as:
#((p * p^-1)(r^5 * r^8)q)/r^-1#
Next, use these rules of exponents to simplify the numerator:
#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#((p^color(red)(1) * p^color(blue)(-1))(r^color(red)(5) * r^color(blue)(8))q)/r^-1 =>#
#(p^(color(red)(1)+color(blue)(-1))r^(color(red)(5)+color(blue)(8))q)/r^-1 =>#
#(p^color(red)(0)r^13q)/r^-1 =>#
#(1 * r^13q)/r^-1 =>#
#(r^13q)/r^-1#
Now, rewrite the expression and use this rule of exponents to complete the simplification:
#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#
#(r^color(red)(13)/r^color(blue)(-1))q =>#
#r^(color(red)(13)-color(blue)(-1))q =>#
#r^(color(red)(13)+color(blue)(1))q =>#
#r^14q# or #qr^14#