Question #e678e

2 Answers
Dec 5, 2017

#int_0^1 x*sqrt(1-x^4)*dx=pi/8#

Explanation:

#int_0^1 x*sqrt(1-x^4)*dx#

=#1/2*int_0^1 sqrt[1-(x^2)^2]*2x*dx#

After using #sinu=x^2# and #cosu*du=2x*dx# substitution, this integral became

#1/2*int_0^(pi/2) sqrt[1-(sinu)^2]*cosu*du#

=#1/2*int_0^(pi/2) sqrt[(cosu)^2]*cosu*du#

=#1/2*int_0^(pi/2) (cosu)^2*du#

=#1/4*int_0^(pi/2) (1+cos2u)*du#

=#[u/4+1/8*sin2u]_0^(pi/2)#

=#pi/8#

Dec 5, 2017

#pi/8#

Explanation:

.

#int_0^1xsqrt(1-x^4)dx#

#u=x^2#
#x=sqrtu#
#u^2=x^4#
#du=2xdx#
#dx=(du)/(2x)=(du)/(2sqrtu)#
#sqrt(1-x^4)=sqrt(1-u^2)#

Now, we substitute the above into the problem integral to turn it into an integral in terms of #u#:

#int(sqrtu)(sqrt(1-u^2))((du)/(2sqrtu))=#

#1/2intsqrt(1-u^2)du#

Now we can use trigonometric substitution to solve this:

#u=sintheta#
#du=costhetad(theta)#

#1/2intsqrt(1-sin^2theta)costhetad(theta)#

#1/2intsqrt(cos^2theta)costhetad(theta)#

#1/2intcosthetacosthetad(theta)=1/2intcos^2thetad(theta)#

#cos^2theta=(1+cos(2theta))/2#

#1/4int(1+cos(2theta))d(theta)=1/4intd(theta)+1/4intcos(2theta)d(theta)#

#1/4theta+1/8sin(2theta)#

Now, we can substitute back for #u#:

#u=sintheta#, then #theta=arcsinu#
#costheta=sqrt(1-six^2theta)=sqrt(1-u^2)#
#sin(2theta)=2sinthetacostheta=2usqrt(1-u^2)#

#1/4theta+1/8sin(2theta)=(arcsinu+usqrt(1-u^2))/4#

Now, we can substitute back for #x#:

#int_0^1xsqrt(1-x^4)dx=(arcsinx^2+x^2sqrt(1-x^4))/4#

We will evaluate this from #0# to #1#:

#(arcsin1^2+1^2sqrt(1-1^4))/4-(arcsin0^2+0^2sqrt(1-0^4))/4=#

#(pi/2+0)/4-(0+0)/4=pi/8#