How do you simplify #\frac { w ^ { 4} } { w ^ { - 7} \cdot w ^ { - 2} \cdot w }#?

1 Answer
Dec 6, 2017

See a solution process below:

Explanation:

First, use these rules of exponents to simplify the denominator:

#a = a^color(red)(1)# and #x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#w^4/(w^color(red)(-7) * w^color(blue)(-2) * w^color(green)(1)) =>#

#w^4/w^(color(red)(-7)+color(blue)(-2)+color(green)(1)) =>#

#w^4/w^-8#

Now, use this rule of exponents to complete the simplification:

#w^color(red)(4)/w^color(blue)(-8) => w^(color(red)(4)-color(blue)(-8)) => w^(color(red)(4)+color(blue)(8)) => w^12#