How do you evaluate #-4\cdot ( 5+ 1) \cdot 3\div 3+ 2#?

2 Answers
Dec 6, 2017

Please see the process and steps below;

Explanation:

#-4 cdot (5 + 1) cdot 3 div 3 + 2#

Using BODMAS to solve..

Bracket!

#-4 cdot (5 + 1) cdot 3 div 3 + 2#

#-4 cdot (6) cdot 3 div 3 + 2#

Of, Not Available!

Division

#-4 cdot 6 cdot 3 div 3 + 2#

Note that a symbol is only assigned to its preceding digits..

Hence the Division sign consist;

#-4 cdot 6 cdot color(blue)(3 div 3) + 2#

#-4 cdot 6 cdot color(blue)(1) + 2#

Multiplication

Please note that the #(cdot)# also represents multiplication!

#-color(blue)(4 cdot 6 cdot 1) + 2#

#-color(blue)(24) + 2#

Addition and Subtraction, are together!

#-24 + 2#

#-22#

Hope this helps!

Dec 6, 2017

#-22#

Explanation:

There are two terms in this expression.
Simplify each to a single answer an then add them in the last line.

Within each term the correct order of operations is:

  • Brackets
  • Powers and roots
  • Multiply and divide

#color(blue)(-4 xx(5+1)xx3 div3)color(red)(" "+" "2)#

Follow the process with the colours:

#-4 xxcolor(blue)((5+1))xx3 div3color(red)(" "+" "2)#

#=(-4 xxcolor(blue)((6))xxcancel3)/cancel3 color(red)(" "+" "2)#

#= color(blue)(-4 xx6)color(red)(" "+" "2)#

#=color(blue)(-24)color(red)(" "+" "2)#

#-22#