Question #7d3ed

1 Answer
Dec 6, 2017

#sqrt2arcsin(sqrt2sinx)-arctan(sinx/sqrt(cos2x))+C#

Explanation:

#int sqrt(cos2x)/cosx*dx#

=#int sqrt[1-2(sinx)^2]/(cosx)^2*cosx*dx#

=#int sqrt[1-2(sinx)^2]/[1-(sinx)^2]*cosx*dx#

After using #sqrt2sinx=siny# an #sqrt2cosx*dx=cosy*dy# substitution, this integral became

=#int sqrt[1-(siny)^2]/[1-(siny/sqrt2)^2]*((cosy*dy)/sqrt2)#

=#sqrt2int sqrt[(cosy)^2]/[2-(siny)^2]*cosy*dy#

=#sqrt2int ((cosy)^2*dy)/[2-(siny)^2]#

=#sqrt2int (dy)/[2(secy)^2-(tany)^2]#

=#sqrt2int (dy)/[2(tany)^2+2-(tany)^2]#

=#sqrt2int (dy)/[(tany)^2+2]#

=#sqrt2int ([(tany)^2+1]*dy)/([(tany)^2+1][(tany)^2+2])#

After using #z=tany# and #dz=[(tany)^2+1]*dy# transformation, it became

#sqrt2int (dz)/[(z^2+1)*(z^2+2)]#

=#sqrt2int (dz)/(z^2+1)#-#sqrt2int (dz)/(z^2+2)#

=#sqrt2arctanz-arctan(z/sqrt2)+C#

=#sqrt2arctan(tany)-arctan(tany/sqrt2)+C#

=#ysqrt2-arctan(tany/sqrt2)+C#

After using #sqrt2sinx=siny#, #y=arcsin(sqrt2sinx)# and #tany=(sqrt2sinx)/sqrt(cos2x)# inverse transforms, I found

#int sqrt(cos2x)/cosx*dx#

=#sqrt2arcsin(sqrt2sinx)-arctan(sinx/sqrt(cos2x))+C#