Step 1) Solve the first equation for #y#:
#-5x + y = -4#
#color(red)(5x) - 5x + y = color(red)(5x) - 4#
#0 + y = 5x - 4#
#y = 5x - 4#
Step 2) Substitute #(5x - 4)# for #y# in the second equation and solve for #x#:
#2x - y = -5# becomes:
#2x - (5x - 4) = -5#
#2x - 5x + 4 = -5#
#(2 - 5)x + 4 = -5#
#-3x + 4 = -5#
#-3x + 4 - color(red)(4) = -5 - color(red)(4)#
#-3x + 0 = -9#
#-3x = -9#
#(-3x)/color(red)(-3) = (-9)/color(red)(-3)#
#(color(ed)(cancel(color(black)(-3)))x)/cancel(color(red)(-3)) = 3#
#x = 3#
Step 3) Substitute #3# for #x# in the solution to the first equation at the end of Step 1 and calculate #y#:
#y = 5x - 4# becomes:
#y = (5 xx 3) - 4#
#y = 15 - 4#
#y = 11#
The Solution Is: #x = 3# and #y = 11# or #(3, 11)#