How do you solve #\log _ { 3} ( \frac { 1} { 9} ) = x#?

2 Answers

here #x=-2#

Explanation:

#log_3(1/9)=x# can be written as#log_3(9^-1)=xrArrlog_3(3^-2)=xrArr-2(log_3(3))=x#
#rArrx=-2# the properties I used are :
#log(1/x)=-logx,log_aa=1,log_aa^2=2log_aa#

Dec 8, 2017

#x=-2#

Explanation:

#"using the "color(blue)"law of logarithms"#

#•color(white)(x)log_bx=nhArrx=b^n#

#log_3(1/9)=x#

#rArr1/9=3^x#

#"note that "1/9=3^-2=3^x#

#rArrx=-2#