How do you prove that the limit of #(x^2) =9 # as x approaches -3 using the epsilon delta proof?
1 Answer
Dec 8, 2017
See explanation...
Explanation:
Let
Choose
Note that:
#0 < delta^2 < delta#
If
#abs(x^2 - 9) < abs((-3-delta)^2 - 9) = abs((-3)^2+6delta+delta^2-9) < 7delta < epsilon#
So:
#AA epsilon > 0 EE delta > 0 : AA x in (-3-delta, -3+delta), abs(x^2-9) < epsilon#
So:
#lim_(x->-3) x^2 = 9#