How do you prove that #log 12 = log 3 + log 4# ?
2 Answers
Dec 15, 2017
See explanation...
Explanation:
Note that as a real valued function of real numbers
Now for any real values of
#10^(a+b) = 10^a * 10^b#
So:
#log 12 = log (3 * 4)#
#color(white)(log 12) = log (10^(log 3) * 10^(log 4))#
#color(white)(log 12) = log (10^(log 3 + log 4))#
#color(white)(log 12) = log 3 + log 4#
Dec 15, 2017
Below referred....
Explanation:
Let's ,
#log_(10)12=x#
#=>10^x=12" "......(1)# [all base is 10]
Next, let's
#log_(10)3=m#
#=>10^m=3" ".......(2)#
and,
#log_(10)4=n#
#=>10^n=4" "........(3)# From
#(1),(2),(3)# ,
#12=3×4#
#=>10^x=10^m×10^n#
#=>10^x=10^(m+n)#
#=>x=m+n#
#=>log12=log3+log4# (proved)