How do you find u=6w+2z given v=<4,-3,5>, w=<2,6,-1> and z=<3,0,4>?

2 Answers
Dec 17, 2017

#u=[18,36,2]#

Explanation:

Find #u=6w+2z# where #w=[2,6,-1]# and #z=[3,0,4]#.

This is essentially a substitution problem and you need to remember that when adding vectors you add corresponding components. So #[a_1,a_2,a_3]+[b_1,b_2,b_3]=[a_1+b_1, a_2+b_2, a_3+b_3]#

#6w=[6(2), 6(6), 6(-1)]=[12,36,-6]#.
#2z=[2(3),2(0),2(4)]=[6,0,8]#.

#u=6w+2z#
#u=[12,36,-6]+[6,0,8]=[18,36,2]#

Dec 17, 2017

# bb ul u = << 18,36,2 >> #

Explanation:

We have:

# bb ul v = << 4,-3,5 >>#
# bb ul w =<< 2,6,-1 >>#
# bb ul z =<< 3,0,4 >>#

Then, to compute #bb ul u#, we just scale the individual vectors and add the individual components, thus:

# bb ul u = 6bb ul w+2bb ul z #
# \ \ \ = 6<< 2,6,-1 >> + 2<< 3,0,4 >> #
# \ \ \ = << 6*2,6*6,6*(-1) >> + << 2*3,2*0,2*4 >> #
# \ \ \ = << 12,36,-6 >> + << 6,0,8 >> #
# \ \ \ = << 12+6,36+0,-6+8 >> #
# \ \ \ = << 18,36,2 >> #

Note that #bb ul v# is superfluous to the question.