#lim_(x->oo)((x^2+4x+1)/(x^2+2x+2))^(10x)=# ?

2 Answers
Dec 19, 2017

#Lim_(xrarroo)((x^2+4x+1)/(x^2+2x+2))^(10x)=e^20#

Explanation:

We know that: #Lim_(xrarroo)(1+1/x)^x=e#

#Lim_(xrarroo)((x^2+4x+1)/(x^2+2x+2))^(10x)#

#Lim_(xrarroo)((x^2+4x+1+2x-2x+1-1)/(x^2+2x+2))^(10x)#

#Lim_(xrarroo)((x^2+2x+2)/(x^2+2x+2)+(2x-1)/(x^2+2x+2))^(10x)#

#Lim_(xrarroo)(1+1/((x^2+2x+2)/(2x-1)))^(10x)#

#Lim_(xrarroo)(1+1/((x^2+2x+2)/(2x-1)))^((10x)((x^2+2x+2)/(2x-1))((2x-1)/(x^2+2x+2))#

Looks very messy but I like it this way. You can substitute to make it more clear but as you can see now we have the same formula as in the beginning.

#Lim_(xrarroo)[(1+1/((x^2+2x+2)/(2x-1)))^((x^2+2x+2)/(2x-1))]^((10x)((2x-1)/(x^2+2x+2))#

We know that: #Lim_(xrarroo)[(1+1/((x^2+2x+2)/(2x-1)))^((x^2+2x+2)/(2x-1))]=e#

And now we can put limit to the exponent (superscript)

#e^(Lim_(xrarroo)(10x)((2x-1)/(x^2+2x+2)))=?#

Let's evaluate limit and then finish it

#Lim_(xrarroo)(10x)((2x-1)/(x^2+2x+2))#

#Lim_(xrarroo)((20x^2-10x)/(x^2+2x+2))#

#Lim_(xrarroo)(cancel(x^2)(20-10/x))/(cancel(x^2)(1+2/x+2/x^2))#

#(20-10/oo)/(1+2/oo+2/oo^2)=(20-0)/(1+0+0)=20/1=20#

The answer: #Lim_(xrarroo)((x^2+4x+1)/(x^2+2x+2))^(10x)=e^20#

Dec 19, 2017

#e^20#

Explanation:

First

#((x^2+4x+1)/(x^2+2x+2))^(10x) approx ((1+4/x)/(1+2/x))^(10x)# for big #x#

Second, making the transformation

#(1+4/x)/(1+2/x)=1+1/y rArr x = 2(y-1)# and then

#((1+4/x)/(1+2/x))^(10x)=(1+1/y)^(20(y-1)) =( (1+1/y)^y)^20(1+1/y)^-20#

Third

#lim_(x->oo)((1+4/x)/(1+2/x))^(10x)=lim_(y->oo)( (1+1/y)^y)^20(1+1/y)^-20 = (lim_(y->oo) (1+1/y)^y)^20lim_(y->oo)(1+1/y)^-20#

but

# (lim_(y->oo) (1+1/y)^y)^20 = e^20# and #lim_(y->oo)(1+1/y)^-20=1# so finally

#lim_(x->oo)((x^2+4x+1)/(x^2+2x+2))^(10x)=e^20#