How do I do this? #(3/8)^2 + 6/7cdot2/9 + (-5)#? #(3/8)^2 -: 6/7cdot2/9 + (-5)#? #(3/8)^2 + 6/7cdot2/9 -: (-5)#? #(3/8)^2 -: 6/7cdot2/9 -: (-5)#?
1 Answer
It's hard to tell if some of the operators are
The answers for all four possibilities are
Recall the acronym PEMDAS for order of operations:
- Parentheses or Exponents
- Multiplication or Division
- Addition or Subtraction
And our four options are...
#(3/8)^2 + 6/7 cdot 2/9 + (-5)# #" "bb((1))# #(3/8)^2 -: 6/7 cdot 2/9 + (-5)# #" "bb((2))# #(3/8)^2 + 6/7 cdot 2/9 -: (-5)# #" "bb((3))# #(3/8)^2 -: 6/7 cdot 2/9 -: (-5)# #" "bb((4))#
OPTION 1
#(3/8)^2 + 6/7 cdot 2/9 + (-5)#
#= 9/64 + 6/7 cdot 2/9 + (-5)#
[apply the square exponent]
#= 9/64 + 12/63 + (-5)#
[multiply the middle terms]
#= 9/64 + 12/63 - 5#
[distribute the plus sign]
Now we require common denominators. You should of course use a calculator to manage this.
#= 9/64 cdot 63/63 + 12/63 cdot 64/64 - 5 cdot (63 cdot 64)/(63 cdot 64)#
Now apply the multiplication first.
#= 567/4032 + 768/4032 - 20160/4032#
Now add these together.
#= -18825/4032#
Both numbers are divisible by
#= color(blue)(-6275/1344)#
OPTION 2
Now that we have done this much, the others should be easier. But be sure to do multiplication/division from left to right! In this case, the new thing to us is that dividing is the same as multiplying by the reciprocal (the upside-down term).
#(3/8)^2 -: 6/7 cdot 2/9 + (-5)#
#= 9/64 cdot 7/6 cdot 2/9 + (-5)#
#= 9/64 cdot 7/27 + (-5)#
#= 63/1728 cdot (1//3)/(1//3) - 5#
[do the multiplication and apply the plus operation]
#= 21/576 - 5 cdot 576/576#
[get common denominators]
#= 21/576 - 2880/576#
[multiply through]
#= -2859/576#
This is as reduced as it gets:
#= color(blue)(-953/192)#
OPTION 3
See what happens when you have blurry images? :)
#(3/8)^2 + 6/7 cdot 2/9 -: (-5)#
#= 9/64 + 12/63 -: (-5)#
The first bit is almost the same as in
#= 567/4032 + 768/4032 -: (-5)#
This time, we do the division first. Careful, the
#= 567/4032 + 768/4032 cdot -1/5#
#= 567/4032 cdot 5/5 - 768/20160#
[common denominators]
#= 2835/20160 - 768/20160#
[apply multiplication]
#= 2067/20160 cdot (1//3)/(1//3)#
[divide through]
#= color(blue)(689/6720)#
OPTION 4
Last one... A tip is to make all the similar operations (
#(3/8)^2 -: 6/7 cdot 2/9 -: (-5)#
#= 9/64 cdot 7/6 cdot 2/9 -: (-5)#
#= 126/3456 cdot -1/5#
#= -126/17280 cdot (1//3)/(1//3)#
#= -42/5760 cdot (1//3)/(1//3)#
#= -14/1920 cdot (1//2)/(1//2)#
#= color(blue)(-7/960)#