Question #273c3

2 Answers
Dec 23, 2017

#lim_(x->0^+)(1/x)^tan(x)#
#=exp(lim_(x->0^+)tan(x)ln(1/x))#
#=exp(-lim_(x->0^+)tan(x)ln(x))#

Since #tan(x)=sin(x)/cos(x)#,
#=exp(-lim_(x->0^+)ln(x)/(cos(x)/sin(x)))#

Use L'Hôpital's rule:
#=exp(lim_(x->0^+)(1/x)/(1/sin^2(x)))#

Rearrange to
#=exp(lim_(x->0^+)sin(x)/x*sin(x))#

Then,
#=exp(lim_(x->0^+)(sin(x)/x)*lim_(x->0^+)(sin(x)))#

Using the fact that #lim_(x->0)sin(x)/x=1#,
#=exp(lim_(x->0^+)sin(x))#
#=exp(0)#
#=1#

Dec 23, 2017

#Lim_(xrarr0^+)(1/x)^tanx=e^0=1#

Explanation:

#Lim_(xrarr0^+)(1/x)^tanx#

We have to apply Euler's identity: #e^lnx=x#

#e^(Lim_(xrarr0^+)ln(1/x)^tanx)#

Let's evaluate limit first:

#Lim_(xrarr0^+)tanx*ln(1/x)=0*oo#

This is type of limit #0*oo# which means we can put it in the form #oo/oo# or #0/0#

#Lim_(xrarr0^+)(ln(1/x))/(1/(tanx))=Lim_(xrarr0^+)(ln(1/x))/(tanx)^-1=oo/oo#

Using L'Hopitals rule:

#Lim_(xrarr0^+)(ln(x^-1))/(tanx)^-1#

#Lim_(xrarr0^+)(1/(x^-1)(-1)x^-2)/(-1*(tanx)^-2*(1/cos^2x))#

#Lim_(xrarr0^+)(x/x^2cancel((-1)))/(cancel((-1))(tanx)^-2(1/cos^2x))#

#Lim_(xrarr0^+)(1/x)cos^2x*(tanx)^2#

#Lim_(xrarr0^+)(cancel(cos^2x)*(sin^2x/cancel(cos^2x)))/x=Lim_(xrarr0^+)(sin^2x)/x=0/0#

Using L'Hopitals rule again:

#Lim_(xrarr0^+)(sin^2x)/x#

#Lim_(xrarr0^+)(2sinxcosx)/1=(2*0*1)/1=0/1=0#

Answer: #e^0=1#