Question #47625

1 Answer
Dec 23, 2017

Area of parallelogram #ABCD# is #90 # Sq.unit.

Explanation:

#A(-12,2) , B(6,2),C(-2,-3) and D(-20,-3)#

Let a digonal #BD# is drawn . Then we get two triangles

#Delta DAB and Delta DCB # ; for #Delta DAB# ,

#D(-20,-3),A(-12,2) , B(6,2)# Area #Delta DAB =#

#A_(DAB) = |1/2(x1(y2−y3)+x2(y3−y1)+x3(y1−y2))|#

#=|1/2(-20(2-2)+(-12(2+3)+6(-3-2)|#

#=|1/2(0-60-30)| =|1/2 *(-90)| = | -45| =45#

For #Delta DCB#

#D(-20,-3),C(-2,-3) , B(6,2)# Area #Delta DCB =#

#A_(DCB) = |1/2(x1(y2−y3)+x2(y3−y1)+x3(y1−y2))|#

#=|1/2(-20(-3-2)+(-2(2+3)+6(-3+3)|#

#=|1/2(100-10+0)| =|1/2 *(90)| = | 45| =45#

Area of parallelogram #ABCD = A_(DAB)+A_(DCB)#

#=45+45 =90 # Sq.unit