The diagram shows a triangle ABC where AB = AC, BC = AD and Angle BAC = 20 Degrees. What is Angle ADB?

enter image source here

1 Answer
Dec 25, 2017

#/_ADB=150^@# approximately.

Explanation:

.

Let's let #/_BDC= /_x# and #/_DBC= /_y#

Since triangle #ABC# is an isosceles triangle then #/_ACB=80^@#

Then from triangle #BDC# we have:

#(BC)/sinx=(BD)/sin80=(DC)/siny#

From triangle #ABC# we have:

#(AC)/sin80=(BC)/sin20#

But #AC=AD+DC# and #BC=AD#. Therefore:

#AC=BC+DC#

#(BC+DC)/sin80=(BC)/sin20#

#BCsin20+DCsin20=BCsin80#

#DCsin20=BC(sin80-sin20)#

#DC=(BC(sin80-sin20))/sin20#

#(BC)/sinx=((BC(sin80-sin20))/sin20)/siny#

#(BC)/sinx=(BC(sin80-sin20))/(sinysin20)#

#(cancel color(red)(BC))/sinx=(cancelcolor(red)(BC)(sin80-sin20))/(sinysin20)#

#sinysin20=sinx(sin80-sin20)#

From triangle #BCD#, we know #x+y=100^@#

#y=100-x#

#sin(100-x)sin20=sinx(sin80-sin20)#

Using the trigonometric identity:

#sin(alpha-beta)=sinalphacosbeta-cosalphasinbeta#

#(sin100cosx-cos100sinx)sin20=sinx(sin80-sin20)#

#sin20sin100cosx-sin20cos100sinx=sinx(sin80-sin20)#

#sin20sin100cosx=sinx(sin80-sin20+sin20cos100)#

Dividing both sides by #cosx#

#sin20sin100=tanx(sin80-sin20+sin20cos100)#

Solving for #tanx#, we get:

#tanx=(sin20sin100)/(sin80-sin20+sin20cos100)#

Now, we can plug in the values of #sin# and #cos# for each angle and get a value for #tanx#:

#tanx=((0.342)(0.9848))/((0.9848-0.342+(0.342)(-0.1736))#

#tanx=0.3368/0.5834=0.5773#

#x=arctan0.5773=29.9978^@# or approximately #30^@#

#/_ADB=180-/_BDC=180-/_x=180-30=150^@#