A line segment has endpoints at #(2 ,4 )# and #(5 ,3 )#. The line segment is dilated by a factor of #3 # around #(3 ,8 )#. What are the new endpoints and length of the line segment?

1 Answer
Dec 29, 2017

New end points: #hat(P): (0,-4)# and #hat(Q):(12,5)#
New segment length: #abs(hat(P)hat(Q))=15#

Explanation:

Let #P# be the original point #(2,4)#
Let #Q# be the original point #(5,3)#
and
Let #C# be the center of dilation, #(3,8)#

Consider the vector #vec(CP)#
#color(white)("XXX")vec(CP)=(2,4)-(3,8)=(-1,-4)#
Dilation by a factor of #3# will scale this vector up by a factor of #3#
So #P# will move to the new location:
#color(white)("XXX")hat(P)=C+3vec(CP)#
#color(white)("XXXX")=(3,8)+3(-1,4)#
#color(white)("XXXX")=(3-3,8-12)#
#color(white)("XXXX")=(0,-4)#

Similarly
#color(white)("XXX")vec(CQ)=(5,3)-(2,4)=(3,-1)#
and new location for #Q# at
#color(white)("XXX")hat(Q)=(3,8)+3(3,-1)#
#color(white)("XXXX")=(12,5)#

The length of the new line segment will be (using the Pythagorean Theorem)
#color(white)("XXX")abs(hat(P)hat(Q))=sqrt((12-0)^2+(5-(-4))^2)#
#color(white)("XXX")=sqrt(12^2+9^2)#
#color(white)("XXX")=sqrt(225)#
#color(white)("XXX")=15#