Question #33988

1 Answer
Dec 30, 2017

Direct proof and solve

Explanation:

Let #k=n# then

# ("_(n-1)^n) + 1 # = # ("_n^(n+1)) #

then we just solve the equation satisfying #k=n#

# (n(n-1)!)/((n-n-1)!(n-1)!) + 1 = ((n+1)!)/((n+1-n)!(n)!) #
simplify
# n + 1 = n+1 #
# n = n #
thus
# n = k #

now we solve the case when #k < n# Let #k=n-1#

# (n(n-1)(n-2)!)/((n-n-2)!(n-2)!) + (n!)/((n-n-1)!(n-1)!) = ((n+1)!)/((n+1-(n-1))!(n-1)!) #
simplify

# -(n(n-1))/2 - n= -((n+1)!)/(2(n-1)!) #

# n(n-1) + 2n= ((n+1)n(n-1)!)/((n-1)!) #

# n^2+ n= (n+1)n #

# n^2+ n= n^2 + n #

# n = n#
thus
# n = k #