What is the arclength of #f(x)=(x^2-2x)/(2-x)# on #x in [-2,-1]#?

1 Answer
Dec 30, 2017

Arc length of #f(x)# is #sqrt2# unit.

Explanation:

#f(x) = (x^2-2x)/(2-x) ; x in [-2,-1]#

#f'(x) = ((2x-2)(2-x)-(x^2-2x)(-1))/(2-x)^2# or

#f'(x) = ((2x-2)(2-x)+(x^2-2x))/(2-x)^2# or

#f'(x) = ((2x-2)(2-x)+x(x-2))/(2-x)^2# or

#f'(x) = ((2-x)(2x-2-x))/(2-x)^2# or

#f'(x) = ((2-x)(x-2))/(2-x)^2=(x-2)/(2-x)=-1#

#:. [f'(x)]^2=1# . Total length of the arc from x = a to x = b is

#int_a^b sqrt(1+[f'(x)]^2)dx #

#L=int_(-2)^(-1) sqrt(1+1)dx# or

#L=int_(-2)^(-1) sqrt(2) dx# or

#L=sqrt2 [x]_-2^-1or L= sqrt2[-1-(-2)]# or

#L= sqrt2[-1+2] =sqrt2#

Arc length of #f(x)# is #sqrt2# unit. [Ans]