How do you evaluate #(x-6)/(x-4) +( 3x +4) / (-3x -3)#?
2 Answers
Explanation:
=
=
Explanation:
#"before adding the fractions we require them to have a"#
#color(blue)"common denominator"#
#"the "color(blue)"common denominator ""is "(x-4)(-3x-3)#
#"multiply the numerators/denominators by the appropriate"#
#"factor to obtain common denominator"#
#(x-6)/(x-4)xx(-3x-3)/(-3x-3)+(3x+4)/(-3x+3)xx(x-4)/(x-4)#
#=((x-6)(-3x-3))/((x-4)(-3x-3))+((3x+4)(x-4))/((x-4)(-3x-3))#
#"expand and simplify numerator leaving the denominator"#
#=(cancel(-3x^2)+15x+18cancel(+3x^2)-8x-16)/((x-4)(-3x-3))#
#=(7x+2)/(-3(x-4)(x+1))larr"common factor of "-3#
#=-(7x+2)/(3(x-4)(x+1))#