How do you evaluate #(x-6)/(x-4) +( 3x +4) / (-3x -3)#?

2 Answers
Dec 31, 2017

#-((7x + 2)/(3x^2 - 9x - 12))#

Explanation:

#(x - 6)/(x - 4) + (3x + 4)/(-3x - 3)# = #(-3(x+1)(x-6)+ (3x +4)(x -4))/(-3(x-4)(x +1))#

= #((-3x^2+15x +18) + (3x^2 -8x -16))/(-3x^2 + 9x +12)#

= #-((7x + 2)/(3x^2 - 9x - 12))#

Dec 31, 2017

#-(7x+2)/(3(x-4)(x+1)#

Explanation:

#"before adding the fractions we require them to have a"#
#color(blue)"common denominator"#

#"the "color(blue)"common denominator ""is "(x-4)(-3x-3)#

#"multiply the numerators/denominators by the appropriate"#
#"factor to obtain common denominator"#

#(x-6)/(x-4)xx(-3x-3)/(-3x-3)+(3x+4)/(-3x+3)xx(x-4)/(x-4)#

#=((x-6)(-3x-3))/((x-4)(-3x-3))+((3x+4)(x-4))/((x-4)(-3x-3))#

#"expand and simplify numerator leaving the denominator"#

#=(cancel(-3x^2)+15x+18cancel(+3x^2)-8x-16)/((x-4)(-3x-3))#

#=(7x+2)/(-3(x-4)(x+1))larr"common factor of "-3#

#=-(7x+2)/(3(x-4)(x+1))#