First we need to find the gradient at #x=pi/3#, since this will be the gradient of the tangent line. We need to calculate the first derivative.
#:.#
#d/dx(5cos(x))=-5sin(x)#
Gradient at #x=pi/3#
#f'(pi/3)=-5sin(pi/3)#
Slope point equation of a line.
#y-5cos(pi/3)=-5sin(pi/3)(x-pi/3)#
#y=-5xsin(pi/3)+((5pi)/3)sin(pi/3)+5cos(pi/3)#
Using identities:
#color(red)(sin(A-B)=sinAcosB-cosAsinB)#
#color(red)(cos(A-B)=cosAcosB+sinAsinB)#
#sin(pi/3)=sin(pi-(2pi)/3)=#
#->sin(pi)cos((2pi)/3)-cos(pi)sin((2pi)/3)=#
#->(0)(-1/2)-((-1)(sqrt(3)/2))=(sqrt(3))/2#
#cos(pi/3)=cos(pi-(2pi)/3)=#
#->cos(pi)cos((2pi)/3)+sin(pi)sin((2pi)/3)#
#->(-1)(-1/2)+(0)(sqrt(3)/2)=1/2#
#:.#
#y=-5xsin(pi/3)+((5pi)/3)sin(pi/3)+5cos(pi/3)#
#y=-5x((sqrt(3))/2)+((5pi)/3)((sqrt(3))/2)+5/2#
#color(blue)(y=-x((5sqrt(3))/2)+((5pisqrt(3)+15)/6))#
GRAPH: