Question #6dbbf

2 Answers
Jan 3, 2018

#int\ cot^2(2x)sin^3(2x)\ dx=-1/6cos^3(2x)+C#

Explanation:

I will use the following identity to rewrite the expression:
#cot(theta)=cos(theta)/sin(theta)#

In the case of our integral, this gives:
#int\ cos^2(2x)/cancel(sin^2(2x))sin^cancel(3)(2x)\ dx=#

#=int\ cos^2(2x)sin(2x)\ dx#

To solve this, I will introduce a u-substitution with #u=cos(2x)#. We can using the chain rule get that the derivative will be:
#(du)/dx=-2sin(2x)#

This means that to integrate with respect to #u#, we divide through by #-2sin(2x)#:
#int\ (cos^2(2x)cancel(sin(2x)))/(-2cancel(sin(2x)))\ du=#

#int\ -1/2u^2\ du=-1/2int\ u^2\ du#

This integral is a straight application of the reverse power rule:
#-1/2*u^3/3+C#

Undoing the substitution, we get that our answer is:
#-1/6cos^3(2x)+C#

Jan 3, 2018

#-1/6cos^3(2x)+C#

Explanation:

Since #cot(2x) = cos(2x)/sin(2x)# we can rewrite the integrand:

#cot^2(2x)sin^3(2x) = cos^2(2x)/sin^2(2x)*sin^3(2x)#

#=cos^2(2x)sin(2x)#

So the integral can be rewritten:

#int cos^2(2x)sin(2x)dx#

We can do this by u-substitution.

Let #u=cos(2x)# so #du=-2sin(2x)dx#

Rearranging our #du# we have:

#-1/2du=sin(2x)dx#

Now we can make substitutions to get:

#-1/2int u^2du = -1/2(1/3)u^3+C#

Simplifying and substituting for #u#:

#int cot^2(2x)sin^3(2x)dx = -1/6cos^3(2x)+C#