How to calculate these ?

In an arithmetic progression, the sum of the first n term is given by # S_n = (9n)/2 - (3n^2)/2#. Look up the 6th term to the 18th term.

1 Answer
Jan 4, 2018

Given sum of first n terms of A P # S_n = (9n)/2 - (3n^2)/2#.

We can write n th term of the series is

#t_n=S_n-S_(n-1)#

#=>t_n =(9n)/2 - (3n^2)/2 -(9(n-1))/2 +(3(n-1)^2)/2#

#=>t_n =(9n)/2 -(9(n-1))/2 - (3n^2)/2 +(3(n-1)^2)/2#

#=>t_n =9/2(n-n+1) - 3/2(n^2 -(n-1)^2)#

#=>t_n =9/2 - 3/2(2n-1)#

So
Inserting #n=6#,

#t_6 =9/2 - 3/2(2xx6-1)=-12#

Inserting #n=7#,

#t_7 =9/2 - 3/2(2xx7-1)=-15#

Inserting #n=8#,

#t_8 =9/2 - 3/2(2xx8-1)=-18#

#---------#
#---------#
#---------#

Inserting #n=18#,

#t_18 =9/2 - 3/2(2xx18-1)=-48#