How do you evaluate #(\frac { \sqrt { 25} } { 3} - \sqrt { 1} ) \cdot \frac { ( - 3) } { \sqrt { 16} } - (-2) \dot 3/(sqrt 64)#?

1 Answer
Jan 6, 2018

#-1/12#

Explanation:

The way I usually approach problems like this is as follows:

Simplify square roots/stuff in square roots:

#(\frac{\sqrt{25}}{3}-\sqrt{1}) \times \frac{-5}{\sqrt{16}}-(-2)\frac{3}{\sqrt{64}}#
#=(\frac{5}{3}-1)\times\frac{-5}{4}-(-2)\frac{3}{8}#

Simplify stuff in parentheses:

#=\frac{2}{3}\times\frac{-5}{4}-(-2)\frac{3}{8}#

Multiply stuff and simplify fractions:

#=\frac{-10}{12}-({-6}/8)#
#={-5}/6 - ({-3}/4)#

Add and/or subtract, using common denominators for fractions if needed:

#={-5}/6 + 3/4#
#={-10}/12 + 9/12#
#=-1/12#