Question #a7bf9

2 Answers
Jan 8, 2018

#y'=[-3sin(3x)ln(x)+cos(3x)/x]x^cos(3x)#

Explanation:

Apply the natural log on both sides:

#y=x^(cos(3x))->lny=lnx^cos(3x)#

Since #ln(a^r)=rlna#, we can rewrite the problem as

#lny=cos(3x)*lnx#

Now we must use implicit differentiation #(dy/dx)# on both sides:

Differentiate both sides with respect to #x#

#1/y*dy/dx=color(red)(-3sin(3x)ln(x)+cos(3x)/x)larr#See proof below

#--------------------#
Apply the product rule:

#d/dx[f*g]=f'(x)*g(x)+g'(x)*f(x)#

Let: #f(x)=cos(3x)# and #g(x)=ln(x)#

Thus, #f'(x)=-3sin(3x)# and #g'(x)=1/x#

#d/dx[cos(3x)*ln(x)]=[-3sin(3x)*ln(x)]+([1/x]*[cos(3x)])#

#d/dx=-3sin(3x)ln(x)+cos(3x)/x#
#--------------------#

Going back to the problem:

#1/y*dy/dx=-3sin(3x)ln(x)+cos(3x)/x#

Multpliy #y# to both sides:

#cancelcolor(red)y*1/cancely*dy/dx=[-3sin(3x)ln(x)+cos(3x)/x]*color(red)y#

Since we want everything in terms of #x# we will replace #color(red)y# with the function first given since #color(red)y# is defined by the function #x^cos(3x)#. So finally,

#dy/dx=y'=[-3sin(3x)ln(x)+cos(3x)/x]x^cos(3x)#

Jan 8, 2018

Given: #y=x^cos(3x)#

Use the natural logarithm on both sides:

#ln(y) = ln(x^cos(3x))#

Use the property #ln(a^c) = (c)ln(a)#:

Given: #ln(y)=cos(3x)ln(x)#

Differentiate both sides with respect to x:

#(d(ln(y)))/dx=(d(cos(3x)ln(x)))/dx#

The left side requires the use of the chain rule:

#(d(ln(y)))/dydy/dx=(d(cos(3x)ln(x)))/dx#

#1/ydy/dx=(d(cos(3x)ln(x)))/dx#

The right side requires the use of the product rule:

#1/ydy/dx=(d(cos(3x)))/dxln(x)+ cos(3x)(d(ln(x)))/dx#

#1/ydy/dx=-3sin(3x)ln(x)+ cos(3x)/x#

Multiply both sides by y:

#dy/dx=(-3sin(3x)ln(x)+ cos(3x)/x)y#

Substitute #y = x^cos(3x)#:

#dy/dx=(-3sin(3x)ln(x)+ cos(3x)/x)x^cos(3x)#