How do you simplify #(x^5+y^5)/(x^3+y^3)#?
1 Answer
Explanation:
Given:
#(x^5+y^5)/(x^3+y^3)#
Note that
So we find:
#(x^5+y^5)/(x^3+y^3) = (color(red)(cancel(color(black)((x+y))))(x^4-x^3y+x^2y^2-xy^3+y^4))/(color(red)(cancel(color(black)((x+y))))(x^2-xy+y^2))#
#color(white)((x^5+y^5)/(x^3+y^3)) = (x^4-x^3y+x^2y^2-xy^3+y^4)/(x^2-xy+y^2)#
We can attempt to simplify this some more by separating out a multiple of the denominator from the numerator:
#(x^2-xy+y^2)(x^2+kxy+y^2)#
#=x^4+(k-1)x^3y+(2-k)x^2y^2+(k-1)xy^3+y^4#
So we could choose
#x^4-x^3y+x^2y^2-xy^2+y^4=(x^2-xy+y^2)(x^2+y^2)-x^2y^2#
So we can write:
#(x^4-x^3y+x^2y^2-xy^2+y^4)/(x^2-xy+y^2)=x^2+y^2-(x^2y^2)/(x^2-xy+y^2)#