If #int_1^3 \ f(x) \ dx = 5# and #int_3^8 \ f(x) \ dx = 10#, what is # int_1^8 \ f(x) \ dx #?

2 Answers
Jan 13, 2018

# int_1^8 \ f(x) \ dx = 15 #

Explanation:

Using the properties of definite integral we have:

# int_a^c \ f(x) \ dx = int_a^b \ f(x) \ dx + int_b^c \ f(x) \ dx #

Hence we can write:

# int_1^8 \ f(x) \ dx = int_1^3 \ f(x) \ dx + int_3^8 \ f(x) \ dx #
# " " = 5 + 10 #
# " " = 15 #

Jan 13, 2018

#int_1^8f(x)dx=15#.

Explanation:

We are asked to find #int_1^8f(x)dx,# which can be thought of as the total area between #f(x)# and the #x#-axis, from #x=1# on the left to #x=8# on the right.

Just like how the area of any geometric shape can be found by breaking it into 2 pieces and adding together the two smaller areas, an integral #int_a^cf(x)dx# over an interval #[a,c]# can be found by breaking it into two smaller intervals, #[a,b]# and #[b,c]#, and adding together their values. In other words, for any #b in (a,c):#

#int_a^cf(x)dx=int_a^bf(x)dx+int_b^cf(x)dx#

Here, we are given #int_1^3f(x)dx=5# and #int_3^8f(x)dx=10.# So, we can compute:

#int_1^8f(x)dx=int_1^3f(x)dx+int_3^8f(x)dx#

#color(white)(int_1^8f(x)dx)=" "5" "+" "10#
#color(white)(int_1^8f(x)dx)=15#.