If #int_1^3 \ f(x) \ dx = 5# and #int_3^8 \ f(x) \ dx = 10#, what is # int_1^8 \ f(x) \ dx #?
2 Answers
# int_1^8 \ f(x) \ dx = 15 #
Explanation:
Using the properties of definite integral we have:
# int_a^c \ f(x) \ dx = int_a^b \ f(x) \ dx + int_b^c \ f(x) \ dx #
Hence we can write:
# int_1^8 \ f(x) \ dx = int_1^3 \ f(x) \ dx + int_3^8 \ f(x) \ dx #
# " " = 5 + 10 #
# " " = 15 #
Explanation:
We are asked to find
Just like how the area of any geometric shape can be found by breaking it into 2 pieces and adding together the two smaller areas, an integral
#int_a^cf(x)dx=int_a^bf(x)dx+int_b^cf(x)dx#
Here, we are given
#int_1^8f(x)dx=int_1^3f(x)dx+int_3^8f(x)dx#
#color(white)(int_1^8f(x)dx)=" "5" "+" "10#
#color(white)(int_1^8f(x)dx)=15# .