A line segment has endpoints at #(5 ,6 )# and #(6 , 1)#. The line segment is dilated by a factor of #2 # around #(4 , 2)#. What are the new endpoints and length of the line segment?
1 Answer
Jan 14, 2018
Explanation:
#"let "A(5,6) ,B(6,1)" and "D(4,2)#
#" then "A'" and "B'" are the images of A and B under"#
#"the dilatation"#
#rArrvec(DA')=color(red)(2)vec(DA)#
#rArrula'-uld=2(ula-uld)#
#rArrula'-uld=2ula-2uld#
#rArrula'=2ula-uld#
#color(white)(xxxx)=2((5),(6))-((4),(2))#
#color(white)(xxxx)=((10),(12))-((4),(2))=((6),(10))#
#rArrA'(6,10)#
#"similarly"#
#vec(DB')=color(red)(2)vec(DB)#
#rArrulb'-uld=2(ulb-uld)#
#rArrulb'=2ulb-uld#
#color(white)(xxxx)=2((6),(1))-((4),(2))=((8),(0))#
#rArrB'(8,0)#
#"to calculate length of segment use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(6,10)" and "(x_2,y_2)=(8,0)#
#d=sqrt((8-6)^2+(0-10)^2)=sqrt104~~10.2" 1 dec. place"#