How do you simplify #\frac { 9x + 81} { 4x ^ { 3} } \cdot \frac { x } { x ^ { 2} - 81}#?

1 Answer
Jan 15, 2018

#(9)/((4x^2)(x-9))#

Explanation:

Let's use our "cross-simplify" method.
Let's factor if there is any factorable part there.
We see that #9x+81=9(x+9)# and #x^2-81=(x+9)(x-9)#
Therefore, we now have:
#(9(x+9))/(4x^3)*x/((x-9)(x+9))# We rewrite #4x^3# as #4x*x*x#
#(9(x+9))/(4x*x*x)*x/((x-9)(x+9))# Now, remember that #(a*b*c)/(d*e)*d/(b*b)=(a*cancelb*c)/(canceld*e)*canceld/(cancelb*b)#

Therefore,
#(9cancel(x+9))/(4cancelx*x*x)*cancelx/((x-9)cancel(x+9))# So we now have:#(9)/(4x^2)*1/((x-9))=>(9)/((4x^2)(x-9))#
That is our answer!