How do you simplify #(\frac { 44x ^ { 3} y ^ { - 4} z ^ { 2} } { - 4x ^ { 4} y ^ { 5} z ^ { - 8} } )# ?

1 Answer
Jan 15, 2018

See a solution process below:

Explanation:

First, rewrite the expression as:

#(44/-4)(x^3/x^4)(y^-4/y^5)(z^2/z^-8) =>#

#-11(x^3/x^4)(y^-4/y^5)(z^2/z^-8)#

Next, use this rule for exponents to simplify the #x# and #y# terms:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#-11(x^color(red)(3)/x^color(blue)(4))(y^color(red)(-4)/y^color(blue)(5))(z^2/z^-8) =>#

#-11(1/x^(color(blue)(4)-color(red)(3)))(1/y^(color(blue)(5)-color(red)(-4)))(z^2/z^-8) =>#

#-11(1/x^(color(blue)(4)-color(red)(3)))(1/y^(color(blue)(5)+color(red)(4)))(z^2/z^-8) =>#

#-11(1/x^1)(1/y^9)(z^2/z^-8) =>#

#-11/(x^1y^9)(z^2/z^-8)#

Then, use this rule for exponents to simplify the #z# term:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#-11/(x^1y^9)(z^color(red)(2)/z^color(blue)(-8)) =>#

#-11/(x^1y^9)(z^(color(red)(2)-color(blue)(-8))) =>#

#-11/(x^1y^9)(z^(color(red)(2)+color(blue)(8))) =>#

#-11/(x^1y^9)(z^10) =>#

#-(11z^10)/(x^1y^9)#

Now, use this rule for exponents to complete the simplification of the #x# term:

#a^color(red)(1) = a#

#-(11z^10)/(x^color(red)(1)y^9) => #

#-(11z^10)/(xy^9)#