First Process:
We can use this rule of exponents to combine the terms in the numerator:
#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#
#(3^color(red)(2) * 3^color(blue)(3))/(2^2 * 3^4) =>#
#3^(color(red)(2) + color(blue)(3))/(2^2 * 3^4) =>#
#3^5/(2^2 * 3^4)#
We can now use these rules of exponents to complete the simplification of the #3# terms:
#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))# and #a^color(red)(1) = a#
#3^color(red)(5)/(2^2 * 3^color(blue)(4)) =>#
#3^(color(red)(5)-color(blue)(4))/2^2 =>#
#3^color(red)(1)/2^2 =>#
#3/2^2 =>#
#3/4#
Second Process:
#(3^2 * 3^3)/(2^2 * 3^4) => (9 * 27)/(4 * 81) => (3 * 3 * 27)/(4 * 81) => (3 * 81)/(4 * 81) => (3 * color(red)(cancel(color(black)(81))))/(4 * color(red)(cancel(color(black)(81)))) => 3/4#