First, multiply each side of the equation by #color(red)(7)/color(blue)(-6)# to eliminate the need for the parenthesis while keeping the equation balanced:
#color(red)(7)/color(blue)(-6) xx 9 = color(red)(7)/color(blue)(-6)
xx (-6)/7(-9 - 9B)#
#-63/6 = (-42)/-42(-9 - 9B)#
#-63/6 = 1(-9 - 9B)#
#-63/6 = -9 - 9B#
Next, add #color(red)(9)# to each side of the equation to isolate the #B# term while keeping the equation balanced:
#color(red)(9) - 63/6 = color(red)(9) - 9 - 9B#
#(6/6 xx color(red)(9)) - 63/6 = 0 - 9B#
#54/6 - 63/6 = 0 - 9B#
#(54 - 63)/6 = 0 - 9B#
#(-9)/6 = -9B#
Now, divide each side of the equation by #color(red)(-9)# to solve for #B# while keeping the equation balanced:
#((-9)/6)/color(red)(-9) = (-9B)/color(red)(-9)#
#(-9)/(6 xx color(red)(-9)) = (color(red)(cancel(color(black)(-9)))B)/cancel(color(red)(-9))#
#color(red)(cancel(color(black)(-9)))/(6 xx cancel(color(red)(-9))) = B#
#1/6 = B#
#B = 1/6#