simplify equation so that #0# is at RHS:
#28x^3 + (1-3x^3) = 28x^3 + 1 -3x^3#
#=25x^3 + 1#
#(x-2)^3 = x^3 + (3*-2*x^2) + (3*4*x) + (-2)^3#
#= x^3 -6x^2 + 12x - 8#
#(x-2)^3+35x^2 = x^3-6x^2+35x^2+12x-8#
#= x^3 + 29x^2 + 12x-8#
#28x^3+(1-3x^3) >= (x-2)^3 + 35x^2#
#25x^3+1>=x^3+29x^2+12x-8#
#24x^3+1 >=29x^2+12x-8#
#24x^3 >= 29x^2+12x-9#
#24x^3 - (29x^2+12x-9) >=0#
#24x^3 - 29x^2 - 12x + 9 >=0#
then input into a graph:
the roots (#x-#intercepts) are where #24x^3 - 29x^2 - 12x + 9 =0#
the values where the graph go above #0# are between where #x=-0.612# and #x = 0.446#, and to the right of where #x = 1.374#
in inequality notation, #-0.612<=x<=0.446, x>=1.374#.
(all figures to #3# decimal places)