How do you find the derivative of #sin(cos(6x))#?

2 Answers
Jan 18, 2018

#(dy)/(dx)=-6cos(cos(6x))sin(6x)#

Explanation:

We use the chain rule a bunch.

#y=sin(u)#, #u=cos(v)#, #v=6x#.

The chain rule says:
#dy/dx=dy/(du)\*(du)/(dv)\*(dv)/(dx)#

#dy/(du) = cos(u) = cos(cos(v))=cos(cos(6x))#
#(du)/(dv)=-sin(v)=-sin(6x)#
#(dv)/(dx)=6#

So,

#(dy)/(dx)=cos(cos(6x))\*(-sin(6x))\*6#

cleaning up:

#(dy)/(dx)=-6cos(cos(6x))sin(6x)#

Jan 18, 2018

#-6cos(cos(6x))sin(6x)#

Explanation:

#"differentiate using the "color(blue)"chain rule"#

#"given "y=f(g(h(x)))" then"#

#dy/dx=f'(g(h(x)))xxg'(h(x))xxg'(x)#

#rArrd/dx(sin(cos(6x))#

#=cos(cos(6x))xxd/dx(cos(6x))xxd/dx(6x)#

#=cos(cos(6x))(-sin(6x))(6)#

#=-6cos(cos(6x))sin(6x)#