How do you simplify #\frac { q \cdot q ^ { 54} } { q \cdot q ^ { - 7} }#?

1 Answer
Jan 20, 2018

See some solution processes below:

Explanation:

First, use this rule of exponents to rewrite the expression:

#a = a^color(red)(1)#

#(q^color(red)(1) * q^color(blue)(54))/(q^color(red)(1) * q^color(blue)(-7))#

Next, use this rule of exponents to simplify the numerator and denominator:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#(q^color(red)(1) * q^color(blue)(54))/(q^color(red)(1) * q^color(blue)(-7)) => q^(color(red)(1) + color(blue)(54))/q^(color(red)(1) + color(blue)(-7)) => q^color(red)(55)/q^color(blue)(-6)#

Now, use this rule of exponents to simplify the expression:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#q^color(red)(55)/q^color(blue)(-6) => q^(color(red)(55)-color(blue)(-6)) => q^(color(red)(55)+color(blue)(6)) => q^61#

Another second process would be to first cancel common terms in the numerator and denominator:

#(color(red)(cancel(color(black)(q))) * q^color(red)(54))/(color(red)(cancel(color(black)(q))) * q^color(blue)(-7)) => q^color(red)(54)/q^color(blue)(-7)#

Then use this rule of exponents to complete the simplification:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#q^color(red)(54)/q^color(blue)(-7) => q^(color(red)(54)-color(blue)(-7)) => q^(color(red)(54)+color(blue)(7)) => q^61#