How do you integrate #\int _ { 0} ^ { 2} ( \sqrt { x } - x + 2) d x#?

2 Answers
Jan 20, 2018

#int_0^2(x^(1/2)-x+2)dx~~3.89#

Explanation:

So, we are given #int_0^2(x^(1/2)-x+2)dx#

In general, #intx^ndx=x^(n+1)/(n+1)#

So, we have #int_0^2(x^(1/2)-x+2)dx=[x^(1/2+1)/(1/2+1)-x^(1+1)/(1+1)+(2x^(0+1))/(0+1)]_0^2=[x^(3/2)/(3/2)-x^2/2+2x]_0^2=((2)^(3/2)/(3/2)-(2)^2/2+2(2))-(0^(3/2)/(3/2)-0^2/2+2(0))=(2)^(3/2)/(3/2)-(2)^2/2+2(2)~~3.89#

Jan 20, 2018

#int_0^2(sqrtx-x+2)~~3.886#

Explanation:

We use the fundamental theorem of calculus, which states that:
#int_a^bf(x)dx=F(b)-F(a)# where #F(x)=intf(x)dx#

So we find the indefinite integral of #sqrtx-x+2#.
Now, remember the anti-power rule: #intx^ndx=(x^(n+1)/(n+1))# where #n!=-1#

Therefore, #int(sqrtx-x+2)dx=x^(3/2)/(3/2)-x^2/2+2x#
We simplify this: #x^(3/2)/(3/2)-x^2/2+2x=>(2x^(3/2))/3-x^2/2+2x#
#F(x)=(2x^(3/2))/3-x^2/2+2x#

We plug this into our formula: #int_0^2(sqrtx-x+2)=F(2)-F(0)#
#F(2)=(2(2)^(3/2))/3-2^2/2+2(2)# which is approximately #3.886#.

#F(0)=(2(0)^(3/2))/3-0^2/2+2(0)# which is equal to #0.#

We now subtract these two values.
#int_0^2(sqrtx-x+2)~~3.886-0#
#int_0^2(sqrtx-x+2)~~3.886#