How do you differentiate #f(x)=(cotx)/(1+cotx)#?
2 Answers
Explanation:
Explanation:
#"differentiate using the "color(blue)"quotient rule"#
#"given "f(x)=(g(x))/(h(x))" then"#
#f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2larrcolor(blue)"quotient rule"#
#g(x)=cotxrArrg'(x)=-csc^2x#
#h(x)=1+cotxrArrh'(x)=-csc^2x#
#rArrf'(x)=((1+cotx)(-csc^2x)+cotxcsc^2x)/(1+cotx)^2#
#color(white)(rArrf'(x))=(-csc^2xcancel(-cotxcsc^2c)cancel(+cotxcsc^2x))/(1+cotx)^2#
#=-(csc^2x)/(1+cotx)^2#