First, rewrite the expression as:
#((6p^2)/9)/(3/(2p))#
Now, use this rule for dividing fractions:
#(color(red)(a)/color(blue)(b))/(color(green)(c)/color(purple)(d)) = (color(red)(a) xx color(purple)(d))/(color(blue)(b) xx color(green)(c))#
#(color(red)(6p^2)/color(blue)(9))/(color(green)(3)/color(purple)(2p)) = (color(red)(6p^2) xx color(purple)(2p))/(color(blue)(9) xx color(green)(3))#
#(color(red)(6p^2)/color(blue)(9))/(color(green)(3)/color(purple)(2p)) =>#
#(color(red)(6p^2) xx color(purple)(2p))/(color(blue)(9) xx color(green)(3)) =>#
#(color(red)((3 xx 2)p^2) xx color(purple)(2p))/(color(blue)(9) xx color(green)(3)) =>#
#(color(red)((color(green)(cancel(color(red)(3))) xx 2)p^2) xx color(purple)(2p))/(color(blue)(9) xx color(red)(cancel(color(green)(3)))) =>#
#(color(red)(2p^2) xx color(purple)(2p))/color(blue)(9) =>#
#(4p^3)/9# or #4/9p^3#