Suppose that,
#S_n=1(n)+2(n-1)+3(n-2)+...+(n-1)(2)+n(1)#.
Then, the reqd. sum #s,# is given by, #s=S_n-n(1).......(square)#.
If we write #S_n=sum_(m=1)^(m=n)T_m#, then observe that,
#T_1=1(n)=1(n-0)=1(n-(1-1))#,
#T_2=2(n-1)=2(n-(2-1))#,
#T_3=3(n-2)=3(n-(3-1))#,
#vdots vdots vdots vdots vdots vdots vdots vdots vdots vdots #
# rArr T_m=m(n-(m-1)=n(n-m+1)#.
#:. S_n=sum_(m=1)^(m=n)m(n-m+1)#,
#=sum_(m=1)^(m=n)(mn-m^2+m)#,
#=sum_(m=1)^(m=n){(n+1)m-m^2}#,
#=(n+1)sum_(m=1)^(m=n)m=sum_(m=1)^(m=n)m^2#,
#=(n+1){(n(n+1))/2}-{(n(n+1)(2n+1))/6}#,
#=(n(n+1))/6{3(n+1)-(2n+1)}#,
#=n/6(n+1)(n+2)#.
#:. (square) rArr" The reqd. sum "s=n/6(n+1)(n+2)-n#,
#=n/6{(n+1)(n+2)-6}#,
#=n/6(n^2+3n+2-6)#,
#=(n^3+3n^2-4n)/6#.
Enjoy Maths., and Spread the Joy!