Question #9d462

2 Answers
Jan 26, 2018

#lim_(x->1)cos(pix/2)/cos(1/x)=0#

Explanation:

We want to solve the limit

#lim_(x->1)cos(pix/2)/cos(1/x)#

Use direct substitution

#lim_(x->1)cos(pix/2)/cos(1/x)=cos(pi/2)/cos(1)=0#

Therefore

#lim_(x->1)cos(pix/2)/cos(1/x)!=pi/2#

Jan 26, 2018

#lim_(xrarr1)(cos((pix)/2))/(cos(1/x)) #

#lim_(xrarr1)(cos((pix)/2))/(cos(1/x)) = (cos(pi/2))/(cos(1)) #

#lim_(xrarr1)(cos((pix)/2))/(cos(1/x)) = 0/cos(1) = "undefined" or oo#

I wont describe cos(1) because finding it would be useless. It would be approx 0.5

So apply L'Hopital's rule

Numerator

#d/dx (cos((pix)/2)) = d/dxcos((pix)/2)d/dx(pix)/2#

#-(pi)/2 sin((pix)/2)#

Plug in 1

#= -(pi)/2 sin((pixx1)/2)#

# = -pi/2#

Denominator

# d/dx(cos(1/x)) = d/dx(cos(1/x))d/dx(1/x)#

#= d/dx(cos(1/x))d/dx (x^(-1))#

#= (-sin(1/x)) (-1xx x^(-1 xx -1))#

#= (-sin(1/x)) (-x^(-2))#

#= (cancel(-)sin(1/x)) (cancel(-)1/(x^(2)))#

#= sin(1/x)/x^2#

Plug in 1

#= sin(1)/1^2#

#= 0.8414709848#

#"If we consider " 0.8414709848 ~~ 1" then "#

#lim_(xrarr1)(cos((pix)/2))/(cos(1/x)) = (-pi)/2#

But I'm not approximating so the answer may be not be there if it is a choice question

Divide numerator by denominator

#= (-pi/2)/0.8414709848#

# = -1.86672666694 #

#(-pi)/2 ~~-1.57079632679~~-1.86672666694 #

#therefore lim_(xrarr1)(cos((pix)/2))/(cos(1/x)) != (pi)/2 #